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Abstract

A neural net architecture is proposed to estimate, in real-time, the fatigue life of mechanical

components, as part of the Intelligent Control Systems for Reusable Rocket Engines. Arbitrary

component loading values were used as input to train a two hidden-layer feedforward neural net

to estimate component fatigue damage. The ability of the net to learn, based on a local strain

approach, the mapping between load sequence and fatigue damage has been demonstrated for

a uniaxial specimen. Because of its demonstrated performance, the neural computation may

be extended to complex cases where the loads are biaxial or triaxial, and the geometry of

the component is complex (e.g. turbopump blades). The generality of the approach is such

that load�damage mappings can be directly eztracted from ezperimental data without requirin9

any knowledge of the stress/strain profile of the component. In addition, the parallel network

architecture allows real-time life calculations even for high frequency vibrations. Owing to its

distributed nature, the neural implementation will be robust and reliable, enabling its use in

hostile environments such as rocket engines. This neural net estimator of fatigue life is seen

as the enabling technology to achieve component life prognosis, and therefore would be an

important part of the life extending control for reusable rocket engines.

1 Introduction.

Intelligent Control Systems (ICS) for Reusable Rocket Engines (RRE), such as the Space Shuttle

Main Engine (SSME), require expert system based decision-making within the response times of

the RRE [1]. For a given level of knowledge of the RRE, and a given amount of computational

power allocated to the expert system, accurate decision-making requires a complete and timely

description of the dynamical state of the RRE. Such a timely dynamic information can be obtained

by using peripheral Application Specific Processors (ASP) interacting with a general-purpose Central

Processing Unit (CPU), i.e. the expert system, in the spirit of sixth generation computers [2]. The

ASP would include hardwired, parallel distributed architectures, e.g. neural networks, to extract

global dynamic state information from a myriad of sensor data (in the time and space domain).

This cybernetics perspective of the ICS is suggestively illustrated by analyzing the visual infor-

mation processing pathway: eye-ball/retina/brain. The sensor function is performed by a spatial

filter (eye-ball), which focuses the individual photons onto the retina (ASP), where global informa-

tion such as contrast enhancement and motion detection is extracted by an intricate neural network



of cones, rods, bipolar and horizontal cells. When reaching the brain, (general purpose CPU), the
visual information has been compressed in a ratio of 150/1, and therefore can be more efficiently ana-

lyzed in relation to patterns or information previously stored in the brain. Likewise, the engineering
mode] stored in the expert system can be best utilized on the premise of an efficient compression of
the sensor data.

From this perspective, we propose an integrated architecture which will regularly measure the
toad values as a function of time, identify the presence of load cycles, and extract in reM-time their

contribution to the cumulative fatigue damage. Component life prognosis and failure detection will

be achieved through such an accurate monitoring of the load history.

2 Architecture of the Real Time Fatigue Life Estimator.

As indicated in Fig.4, the real time fatigue life estimator that is proposed consists of two functional

blocks: a preprocessor and a neural network. The role of the preprocessor is to perform simple
front-end signal processing in order to improve the computational efficiency of the neural network.

2.1 Preprocessor.

First, the preprocessor extracts the peak-to-peak load transitions by comparing the loads sampled

at three successive time intervals. Once an extremal load value has been identified, it is stored in

a shift-register type of buffer which is continuously analyzed to detect the occurence of load cycles.
If a load cycle is identified, the content of the shift-register is input to a neural net architecture.

If not, the shift-register is ready to receive an additional extremal load value. In order to define a

load cycle and understand its impact on the fatigue life, it is best to review briefly the underlying
concepts of the uniaxial local strain approach [3] [4] [5].

2.1.1 Uniaxial Local Strain Approach.

To demonstrate the concepts of the local strain approach, it is suggestive to interpret the mechanical

effects of load changes in terms of dynamical trajectories in the stress/strain plane. It assumes a

uniaxial behavior of the component, i.e. a stress _z and a strain e, in the direction of the applied

load P. Changes in stress are related to changes in strain according to the standard elastic/plastic
decomposition of the total strain range Ae

no-

n.= --k- + (1)

where the elastic strain range, zxa-g-, is the ratio of the total stress range, Act, over the elastic modulus,

E; Aep is the plastic strain range. This non-linearity of the stress/strain relationship is responsible

for the occurence of hysteresis loops in the _a, e} plane which characterize the degree of fatigue
damage of the component caused by the corresponding load variations. Examples of trajectories in

the {or, e} plane are given in Fig.1 for an irregular load sequence applied to the fatigue specimen of
Ref[3]. Properties of RQC100 steel are used in this paper to illustrate the correlations between load

sequences and fatigue damage. A peak value of the load corresponds to a reversM in the loading
direction, e.g. compression to tension, or vice-versa. As a result of such reversals, small cracks are

initiated and enlarged, leading ultimately to mechanical rupture. The fatigue damage of a load cycle

is therefore characterized by the number of times, Ncucle, that such a cycle can be repeatedly applied

to a component before a crack develops in the material. For this reason, we will refer to Neuc_ _ as
cycle number.



According to the Linear Damage Rule (LDR) [6]-[7], the fatigue damage pcycl_ of a hysteresis

loop (such as one of those in Fig.lb) is given by the ratio

1
> 0, (2)

I > pcycle -- Ncycte

An estimation of the fatigue life is obtained by cumulating the contributions p_wzc of the individual

cycles which occured during the load history. In the LDR approach, the fatigue damage of a load

cycle is independent of the fatigue damage accumulated by the component. This cycle-counting
method is useful for the treatment of random load sequences, where the load history consists of a

succession of cycles randomly distributed in the stress/strain plane. Yet, its predictions are non-
conservative when the interaction of loadings at different strain/stress levels has to be taken into

account. Such is the case of high-low load sequences, where the fatigue damage of a load cycle

not only depends on its cycle number, Ncy_lc, but also on the cumulative fatigue damage of the

component. This necessitates the use of Damage Curve Approaches (DCA) [8]-[9] to reflect the
effects of such non-linear interactions on component fatigue life. In spite of these non-linearities,

component fatigue life can be estimated from the sole knowledge of the mapping between load cycle

and cycle number, whether the Fatigue Damage Accumulator is implemented using LDR or DCA

(Fig.4).
It is the purpose of this paper to demonstrate the possibility of learning, based on a local strain

approach, the mapping of random load cycles with their fatigue damage pc_clc = )vc_c,o '

The way the preprocessor detects the existence of a load cycle from a set of four consecutive
extremal values is indicated in Fig.2, together with a diagram of the corresponding hysteresis loop

in the {or, e} plane. In Fig.2a, the compression sequence AB is interrupted in B by the hysteresis
loop BCB (tension sequence BC, followed by compression sequence CB), before resuming to BD.

Fig.2b is obtained from Fig.2a by exchanging compression and tension. The existence conditions
for hysteresis loops are PA >_ Pc and PB _> PD (Fig.2a), or PA <_ Pc and PB < PD (Fig.2b).

Compressive and tensile load cycles are shown in Fig.3a for a load sequence resulting from the

superposition of low-frequency and high-frequency vibrations. In contrast, several load cycles may
be initiated without being completed, as is the case for the damped vibrations shown in Fig.3b.

Whenever load reversals associated with a load cycle have been identified, the preprocessor passes

the result of the neural computation to the Fatigue Damage Accumulator as shown in Fig.4; and

then removes the load cycle from the content of the shift-register.

Although the local strain approach assumes the existence of a unlaxial state of stress, its un-

derlying concepts of hysteresis looping and memory effects are sufficiently general to be valid under

more complex conditions [3]: e.g. biaxial/triaxial states of strain/stress.

2.2 Neural Network Architecture.

Once a load cycle has been identified by the preprocessor, the contents of the shift-register are

input to a feedforward neural net. As shown in Fig.4, each input unit of the neural net is in

one-to-one correspondance with each buffer of the shift-register of the preprocessor. This means

that a peak value of the load sequence is fanned out to each neuron of the first hidden layer.
The activation function of a neuron is chosen to be the exponential type of I/O response function,

1 where the input is the sum of the weighted outputs of all the connected
Ou_pu_ - l+exp(-input)'

neurons and a threshold term. The neural net output contributes to the fatigue damage only if the

presence of a load-cycle is identified by the preprocessor.
An important issue which affects the design of the neural architecture is the accuracy with

which the fatigue damage needs to be estimated. To estimate the cumulative fatigue damage of a

component, it is necessary to estimate accurately the fatigue damage due to each individual cycle

since the load history consists of a multitude of load reversals of small amplitude. We propose
a neural architecture that can be expanded laterally in order to adaptively increase the precision



of theneuralcomputation.Thearchitectureis anarrangementof neuralnetbuildingblocksthat
is functionallyreminiscentof a successiveapproximationregister,operatingin parallel,andit isdescribedasfollows.

If p,,,,_isanacceptablelowerboundfor thefatiguedamageof an individualhysteresisloop,a
feed-forwardnetF1 is trained to map individual load cycles over the interval [0, -log(pm,,_)]. If F1

has learned the mapping with a sufficient accuracy, it can be used to predict the fatigue life. If not,

F1 is used as a classifier to separate the cycle contributions that are larger than -0.51og(p,,,,_) from

those that are smaller. Two feed-forward nets, Fz and Fz, are then trained separately to map the

load cycles over the intervals [0, -t°g(°"'")2 + 6] and [-_o_(_.,.) - 6, -log(p,,,,,,)] respectively, where

5 is the average resolution of F1. After training, F1, F2, and Fz are operated in parallel, with the

output node of F1 inhibiting the output node of F2 or F3 which does not correspond to the class

defined by F1. As shown in Figure 5, the remaining active node of F2, or F3, provides an estimation

of the fatigue damage caused by the load-cycle which has been identified by the preprocessor. If this

estimation is accurate, the parallel arrangement of F1, F2, F3 can be used for prognosis/diagnosis of
the mechanical fatigue. If not, F2 and F3 are used as classifiers, and the architecture is expanded

laterally with four additional nets whose outputs are activated/inhibited by the output nodes of F2
or F3. This procedure can be reiterated until desired accuracy is reached.

To illustrate the practilality of this approach and demonstrate the possibility of extracting the
highly non-linear features which govern the material behavior in complex situations, an architecture

of two-hidden layer neural building blocks has been trained in supervised learning mode [10]-[11]
to predict the fatigue damage of a specimen of RQC100 steel in the uniaxial local strain approach.

When learning from experimental data, the choice between a back-error-propagation network (BEP)
or a counter-propagation network will depend upon the degree of representativeness of the training
data set. When learning from an analytical model, e.g. the local strain approach, it is possible to

generate a training data set that is highly representative of the load/damage relationship. In that

case, a good internal representation of the mapping can be developed by a BEP network [12]-[13]
known to be more efficient as the degree of representativeness of the training data set increases.

3 Neural Network Training.

The training data set was generated on the basis of the uniaxial local strain approach for cyclic

loading within fixed limits [3] [5]. The initial value of strain, e0, is calculated according to the load
strain calibration of the loading path

¢0 = sign(Po) × ( + ( ) ) (3)

where Po is the final value of the loading path, and the fitting constants are C1 = 1410 ksi (kilopounds

per square inch), C2 = 65.5 ksi, and d = 0.31 for the geometry of the uniaxial RQC100 specimen

given in l_ef.[3]. The initial value of the stress a0 corresponding to Po is calculated following the
non-linear stress/strain relationship given in Eq.(1)

where the elastic modulus is E = 29500ksi, A = 167ksi and s = 0.10 for RQC100 steel. The initial

loading creates a cristallographic slip in the material, which modifies its mechanical response under

subsequent loadings. The irreversible effect of this cristallographic slip on component behavior is

accounted for by expanding the calibration curve and the stress/strain curve, Eqs.(3)-(4), with a
factor of 2 and by shifting their origins.



After loading,the "image"of a loadsequencein the{a,e} planeis thereforeobtainedasthe
solutionof thesetofequations

2 - 2c1 +( ) - 2E

sig, (o - or) : sig ( - = s g (P - (5)

where (Pc, e_, a_) corresponds to the origin of the stress-strain hysteresis loop curve of the current

"point" (P, e, or). For a hysteresis loop Hi2 starting at (Pl, q, or1) and ending at (P2, ca, or2), the
number N12 of loops H12 that would lead to the initiation of a crack is obtained from the fitted

equation [3]
I =-ql
--g-- : (2N =)b+  's(PNl=)c (6)

with a,_ = _ if it is a tensile mean-stress, i.e. crm > 0, and am = 0 if it is a compressive mean-2
stress. For RQC100 steel, the fatigue strength coefficient is o'¢1 = 168ksi, and the fatigue strength

exponent is b = -0.075; the fatigue ductility coefficient is et! = 1.06, and the fatigue ductility

exponent is c = -0.75.

It is well-known that the performance of the neural computation can be significantly enhanced

by embedding explicitly any a-priori knowledge or constraints of the system in the preprocessing or

the neural architecture itself. The proposed neural estimation of the fatigue life is actually subject

to the detection of load cycles by the preprocessor. Similarly, any a-priori knowledge about the gross

dynamic properties of the system is likely to improve the performance of the neural computation. For

example, load sequences that are periodic or quasi-periodic, such as in Fig.aa, lead to a maximum

of two or three cycles that remain simultaneously open during the entire load history. This implies
that the mechanical behavior of components subjected to load patterns such as the one of Fig.aa

can be predicted by reducing the number of input units to a maximum of 8-10. In addition, the

regularity of such load patterns facilitates the feature extraction, and improves the ability of the net

to predict component behavior for such load patterns. In contrast, for the most irregular sequences

where the loads are randomly distributed, load patterns such as in Fig.ab can occur, so that more

buffers are needed in the shift-register of the preprocessor. In the latter case, training/learning is

more difficult because of the great irregularities of the load variations.

The behavior of RQC100 steel under random load sequences has been simulated for cyclic loading

within fixed limits [3] [4] [5] in the dynamic range Dp = [-P,,_,, +P,,_=_] . The initial load P_ is

arbitrarily chosen over Dp, and defines the domain of variations of the subsequent loads P(t),
IP(t)[ < ]Pil. (The neural estimation of cumulative damage resulting from cyclic loading with

variable boundaries, for which there exists t such that tP(t)] >_ IP, t, is the object of an on-going
analysis.) The random load sequences used to generate the training data set are obtained as follows.

A uniform set {P_} of initial loading values is generated over Dp. For each P_, a uniform set {P=_} of
average values of the load sequence is generated with the condition that IPi[ >_ P_ > -[Pil. Given

an average value P_, a uniform set {Pa} of maximum amplitudes of the load variations is generated

over [0, rnam([Pi + P_ I, IPi - P_ I)]. For each triplet (Pi, P=,, P_), a load sequence is generated as a

set of K points randomly distributed over [P_, -P_, P=_ + P=], from where only individual load cycles

such that 1 > Pc_z_ > P,,,_,_ are retained for training. The interval to be mapped, [0,-log(p,=_)],

is divided in 10 equal subintervals {It, k = 1, 10} which are equally populated by data generated

from random load sequences. A training iteration consists of choosing randomly a value -log(p_ucl_)
in one of the randomly picked subintervals It. The load values of the corresponding sequence are

scaled as /5_v_ = P_--_-w-_ze[-1p_._+1], and the fatigue damage is scaled over the active range [0.1, 0.9]
of the neuron output of the last layer:

-,_rg_.e l°g(P_u_"_) x 0.8 + 0.1 (7)



Tofavorhomogeneouslearningof themappingload/damageover[0,-log(pm,_)],theweightsand
thresholdswereupdatedbybatchingthesteepest-descentcontributionsof 10consecutiveI/O pairs

-,orge, 
cycle, Pcycle )"

In this simulation of the behavior of a uniaxial RQC100 steel specimen [3], the dynamic range
of load variations has been bounded by P, na_ = 90ksi, i.e., approximately at half the value of the

fatigue strength coefficient crlt -- 167ksi. With this value of P,,az, it was found that load sequences

corresponding to K = 200 random values were long enough to indicate that a probable maximum

number of 7 initiated cycles can remain simultaneously open during a random load history. On

the basis of this statistical result, 15 buffers were allocated to the shift-register of the preprocessor.

Cycles contributing less than pm,,_ = 10 -1° were neglected, and 10,000 e]ements were used for

training.

4 Neural Network Performance.

Training was done on a PC-based accelerator coprocessor board (ANZA+) and the elementary
neural building block was a two-layer feedforward net with 15 input units, 100 neurons in the first

hidden layer, 50 neurons in the second hidden layer, and a single neuron in the output layer. The

performance of the neural computation was evaluated by averaging the absolute value of the error
-target -output

e_yc_e : Pc_le - Pcy_e over a set of 10,000 I/0 pairs (Pestle, -target,P_ze ) that were not used to train
-target

the net, and with the scaled fatigue damage P_le uniformly distributed over [0.1, 0.9].
The average absolute error of this net F1 is @ :< @cycle >: 0.021 with a standard deviation

6_ = 0.029, (versus the average @learning = 0.020 and the standard deviation $@learning = 0.026
calculated for the training data set); and the distribution of the estimated values is symmetric

with respect to the exact values. This represents accurate learning (within 2%) of the uniaxial
strain approach. To interpret the effect of this error on fatigue damage estimation, recall that a

logarithmic relationship exists between the network output and the fatigue damage estimate. Thus,

the fatigue damage predicted by the network has the same probability of being larger or smaller

than that predicted by the teacher. If it is larger, it will be in the average r = 1.8 times the

value predicted by the teacher; and if it is smaller, it will be in the average ! : __1 times the
r 1.8

value predicted by the teacher. Said another way, 90% of the estimated values will be within a

factor 4 and 1/4 (standard deviation upper-bound) of the exact data. In order to demonstrate the

ability of the architecture to improve the accuracy of the neural computation, two additional neural
-target£r^ . _buildingblocks,F2 and F3, have been trainedto map load-cycle/fatigue-damageforP_vc_e [v,0._J

and P_y_=e-targete[=i'_'_"" 10]respectively.As shown inFig.5,net FI isused asa classifierforthe output nodes

ofF2 and F3. With thistwo-stageneuralarchitecture,the valueofthe averageratior definedabove

islowered to r = 1.5,and 90% of the estimated valuesare within a factor2.5 and I/2.5 (standard

deviationupper-bound) of the exact data. Itisalso noted that 75% of the estimated valuesare

alreadywithin a factor1.7and I/1.7of the exact data.

Itisfinallyemphasized that no attempt has been made to look for the minimum number of

neurons and synapticconnectionsthat providethe same degree ofaccuracy asthe two-hidden layer

buildingblock chosen in thissimulation.

5 Conclusion.

A neural net architecture has been proposed to extract the correlations between random load se-

quences and their contributions to cumulative damage in order to predict component fatigue damage.

The efficiency of the neural computation to map load sequences with fatigue damage has been demon-

strated on a uniaxial RQC100 notched member for the most irregular load histories of cyclic loading

with fixed boundaries. The real-time capability of this parallel processing architecture, together with



thesimplicityofits practicalimplementation,makesit computationallyveryattractiveto enhance
theperformanceofcomplexICS.BecauseofthecomplexityofthecomponentcouplingsoftheRP_E,
theICShasto beableto anticipatein real-timetheeffectofglobalchangesofconditionsonindi-
vidualcomponents,e.g.theeffectof agasflowvariationonthefatiguelifeof aturbopumpblade.
In that context,it wouldbenaturalto extendtheconceptsof neuralcomputationdevelopedin
thisworkto thefatiguelifepredictionof multiazialcomponents subjected to temperature variations
[14]-[15].
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